The Behavior of Spatially Distributed Evolutionary Algorithms in Non-Stationary Environments
نویسندگان
چکیده
Traditional EAs lose diversity fairly quickly due to the strong selection pressures used to achieve good optimization performance, and thus have diiculty with non-stationary environments ((tness landscapes) unless significant algorithmic changes are made. Decentralized and spatially distributed EAs intuitively appear to be more robust in their ability to perform well in both stationary and non-stationary problem domains. We explore this hypothesis with a set of empirical studies that, although preliminary in nature, supports this claim and provides some additional insights into properties of spatially distributed EAs.
منابع مشابه
مکان یابی وفقی موبایل به روش آزمون باقیمانده
Determination of mobile localization with time of arrival (TOA) signal is a requirement in cellular mobile communication. In some of the previous methods, localization with non-line-of-sight (NLOS) paths can lead to large position error. Also for simplicity, in most simulations suppose non stationary actual environments as stationary. This paper proposes (residual test + recursive least square)...
متن کاملPresenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.
Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007